Search results for "model [interaction]"

showing 10 items of 1495 documents

Direct estrogen receptor (ER) / HER family crosstalk mediating sensitivity to lumretuzumab and pertuzumab in ER+ breast cancer.

2017

Bidirectional cross talk between members of the human epidermal growth factor family of receptors (HER) and the estrogen receptor (ER) is believed to underlie resistance mechanisms that develop in response to treatment with anti-HER agents and endocrine therapy. We investigated the interaction between HER2, HER3 and the ER in vitro using human embryonic kidney cells transfected with human HER2, HER3, and ERα. We also investigated the additive efficacy of combination regimens consisting of anti-HER3 (lumretuzumab), anti-HER2 (pertuzumab), and endocrine (fulvestrant) therapy in vivo. Our data show that both HER2 and HER3 can directly complex with the ER and can mediate phosphorylation of the …

0301 basic medicineCell signalingReceptor ErbB-3Receptor ErbB-2Cancer TreatmentEstrogen receptorlcsh:MedicineSignal transductionBiochemistryMice0302 clinical medicineAntineoplastic Combined Chemotherapy ProtocolsBreast TumorsMedicine and Health SciencesReceptorlcsh:Scienceskin and connective tissue diseasesMultidisciplinaryRemission InductionEndocrine TherapySignaling cascadesPrecipitation TechniquesTreatment OutcomeReceptors EstrogenOncology030220 oncology & carcinogenesisMonoclonalCell linesFemalePertuzumabBiological culturesmedicine.drugResearch ArticleAdultCell biologyMAPK signaling cascadesPaclitaxelBreast NeoplasmsAntibodies Monoclonal Humanized03 medical and health sciencesBreast cancerCell Line TumorBreast CancermedicineEndocrine systemAnimalsHumansImmunoprecipitationFulvestrantbusiness.industrylcsh:RHEK 293 cellsCancers and NeoplasmsBiology and Life SciencesEstrogensReceptor Cross-TalkLumretuzumabmedicine.diseaseXenograft Model Antitumor AssaysHormonesResearch and analysis methods030104 developmental biologyCancer researchlcsh:QbusinessPloS one
researchProduct

EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance.

2016

Diffuse invasion of the surrounding brain parenchyma is a major obstacle in the treatment of gliomas with various therapeutics, including anti-angiogenic agents. Here we identify the epi-/genetic and microenvironmental downregulation of ephrinB2 as a crucial step that promotes tumour invasion by abrogation of repulsive signals. We demonstrate that ephrinB2 is downregulated in human gliomas as a consequence of promoter hypermethylation and gene deletion. Consistently, genetic deletion of ephrinB2 in a murine high-grade glioma model increases invasion. Importantly, ephrinB2 gene silencing is complemented by a hypoxia-induced transcriptional repression. Mechanistically, hypoxia-inducible facto…

0301 basic medicineCell signalingScienceGeneral Physics and AstronomyRepressorDown-RegulationAngiogenesis InhibitorsEphrin-B2BiologyGeneral Biochemistry Genetics and Molecular BiologyArticleNeovascularization03 medical and health sciencesDownregulation and upregulationddc:570GliomamedicineGene silencingAnimalsHumansNeoplasm InvasivenessPsychological repressionZinc Finger E-box Binding Homeobox 2Regulation of gene expressionMice KnockoutMultidisciplinaryNeovascularization PathologicQGeneral ChemistryGliomamedicine.diseaseHypoxia-Inducible Factor 1 alpha SubunitXenograft Model Antitumor AssaysCell HypoxiaCell biologyUp-RegulationBevacizumabGene Expression Regulation NeoplasticMice Inbred C57BL030104 developmental biologyDrug Resistance Neoplasmmedicine.symptomNature communications
researchProduct

Increasing Neural Stem Cell Division Asymmetry and Quiescence Are Predicted to Contribute to the Age-Related Decline in Neurogenesis.

2018

Summary: Adult murine neural stem cells (NSCs) generate neurons in drastically declining numbers with age. How cellular dynamics sustain neurogenesis and how alterations with age may result in this decline are unresolved issues. We therefore clonally traced NSC lineages using confetti reporters in young and middle-aged adult mice. To understand the underlying mechanisms, we derived mathematical models that explain observed clonal cell type abundances. The best models consistently show self-renewal of transit-amplifying progenitors and rapid neuroblast cell cycle exit. In middle-aged mice, we identified an increased probability of asymmetric stem cell divisions at the expense of symmetric di…

0301 basic medicineCell typeAgingNeurogenesisBiologyAdult Neurogenesis ; Computational Model ; Lineage Tracing ; Lineage Tree Simulation ; Model Averaging ; Moment EquationsModels BiologicalGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMiceNeuroblastNeural Stem CellsAnimalsCell LineageComputer SimulationProgenitor celllcsh:QH301-705.5Stochastic ProcessesNeurogenesisAsymmetric Cell DivisionCell CycleReproducibility of ResultsCell cycleNeural stem cellClone Cells030104 developmental biologylcsh:Biology (General)Stem cellNeuroscienceHomeostasisCell reports
researchProduct

Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Dro…

2016

During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to i…

0301 basic medicineCentral Nervous SystemCancer ResearchEmbryologyGene ExpressionNervous SystemNeural Stem CellsAnimal CellsMedicine and Health SciencesDrosophila ProteinsHox geneGenetics (clinical)Regulation of gene expressionGeneticsNeuronsMembrane GlycoproteinsDrosophila MelanogasterGene Expression Regulation DevelopmentalAnimal ModelsProtein-Tyrosine KinasesNeural stem cellCell biologyInsectsPhenotypesembryonic structuresDrosophilaDrosophila melanogasterAnatomyCellular Structures and OrganellesCellular TypesResearch Articleanimal structuresArthropodalcsh:QH426-470ImmunoglobulinsBiologyAntennapediaResearch and Analysis Methods03 medical and health sciencesModel OrganismsNeuroblastNuclear BodiesCyclin EGeneticsAnimalsGene RegulationCell LineageMolecular BiologyEcology Evolution Behavior and SystematicsLoss functionCell NucleusHomeodomain ProteinsNeuroectodermEmbryosOrganismsBiology and Life SciencesCell Biologybiology.organism_classificationInvertebrateslcsh:Genetics030104 developmental biologyCellular NeuroscienceDevelopmental BiologyNeurosciencePLoS Genetics
researchProduct

Establishing gene models from the Pinus pinaster genome using gene capture and BAC sequencing

2016

Background In the era of DNA throughput sequencing, assembling and understanding gymnosperm mega-genomes remains a challenge. Although drafts of three conifer genomes have recently been published, this number is too low to understand the full complexity of conifer genomes. Using techniques focused on specific genes, gene models can be established that can aid in the assembly of gene-rich regions, and this information can be used to compare genomes and understand functional evolution. Results In this study, gene capture technology combined with BAC isolation and sequencing was used as an experimental approach to establish de novo gene structures without a reference genome. Probes were design…

0301 basic medicineChromosomes Artificial BacterialDNA PlantGenomicsBiologyMaritime pineGenome03 medical and health sciencesGene captureGeneticsGene familyGenomic libraryGeneBACGene LibraryGeneticsModels GeneticExonsGenomicsSequence Analysis DNAPinusIntronsGene structurePromoter studies030104 developmental biologyBioinformatic pipelineGene model constructDNA microarrayFunctional genomicsGenome PlantReference genomeResearch ArticleBiotechnologyBMC Genomics
researchProduct

Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer

2018

Solid malignancies have been speculated to depend on cancer stem cells (CSCs) for expansion and relapse after therapy. Here we report on quantitative analyses of lineage tracing data from primary colon cancer xenograft tissue to assess CSC functionality in a human solid malignancy. The temporally obtained clone size distribution data support a model in which stem cell function in established cancers is not intrinsically, but is entirely spatiotemporally orchestrated. Functional stem cells that drive tumour expansion predominantly reside at the tumour edge, close to cancer-associated fibroblasts. Hence, stem cell properties change in time depending on the cell location. Furthermore, although…

0301 basic medicineColorectal cancerCellClone (cell biology)Mice NudeContext (language use)Colon cancer cancer stem cells tumor microenvironment.Article03 medical and health sciencesCancer stem cellCancer Stem CellsAntineoplastic Combined Chemotherapy ProtocolsmedicineTumor MicroenvironmentAnimalsHumansOsteopontin (OPN Spp1)OsteopontinStem Cell DynamicsCells CulturedCell ProliferationbiologyColon CancerGene Expression ProfilingCancerDisease RelapseTumour growthCell Biologymedicine.diseaseXenograft Model Antitumor AssaysCell biologyGene Expression Regulation NeoplasticOxaliplatinTamoxifen030104 developmental biologymedicine.anatomical_structureColonic Neoplasmsbiology.proteinNeoplastic Stem CellsTherapyStem cellCuesNature cell biology
researchProduct

The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function

2021

It is difficult to answer important questions in neuroscience, such as: “how do neural circuits generate behaviour?,” because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion…

0301 basic medicineComputer scienceCognitive Neurosciencemedia_common.quotation_subjectved/biology.organism_classification_rank.speciesNeuroscience (miscellaneous)Neurosciences. Biological psychiatry. Neuropsychiatry03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineDevelopment (topology)Biological neural networkModel organismFunction (engineering)DrosophilaElectronic circuitmedia_commonbiologyved/biologyvariabilityfungiconnectomebiology.organism_classificationSensory Systemscritical periodlocomotion030104 developmental biologyConnectomeDrosophilaDrosophila melanogasterNeurosciencecircuit030217 neurology & neurosurgeryRC321-571Frontiers in Neural Circuits
researchProduct

Remarks on GRN-type systems

2020

Systems of ordinary differential equations that appear in gene regulatory networks theory are considered. We are focused on asymptotical behavior of solutions. There are stable critical points as well as attractive periodic solutions in two-dimensional and three-dimensional systems. Instead of considering multiple parameters (10 in a two-dimensional system) we focus on typical behaviors of nullclines. Conclusions about possible attractors are made.

0301 basic medicineComputer sciencelcsh:RGeneral EngineeringGene regulatory networkattractorslcsh:MedicineType (model theory)Nullcline03 medical and health sciences030104 developmental biology0302 clinical medicineordinary differential equations030220 oncology & carcinogenesisOrdinary differential equationAttractorgenetic regulatory networksApplied mathematicslcsh:Qlcsh:ScienceFocus (optics)4open
researchProduct

Analysis of Microstructure of the Cardiac Conduction System Based on Three-Dimensional Confocal Microscopy

2016

The specialised conducting tissues present in the ventricles are responsible for the fast distribution of the electrical impulse from the atrio-ventricular node to regions in the subendocardial myocardium. Characterisation of anatomical features of the specialised conducting tissues in the ventricles is highly challenging, in particular its most distal section, which is connected to the working myocardium via Purkinje-myocardial junctions. The goal of this work is to characterise the architecture of the distal section of the Purkinje network by differentiating Purkinje cells from surrounding tissue, performing a segmentation of Purkinje fibres at cellular scale, and mathematically describin…

0301 basic medicineConfocal Microscopylcsh:Medicine030204 cardiovascular system & hematologylaw.inventionPurkinje Cells0302 clinical medicineAnimal CellslawMedicine and Health SciencesMyocyteSegmentationlcsh:ScienceMammalsMicroscopyMicroscopy ConfocalMultidisciplinaryLight MicroscopyHeartAnimal ModelsAnatomyVertebratesRabbitsCellular TypesAnatomyElectrical conduction system of the heartNetwork AnalysisResearch ArticleComputer and Information SciencesCell typeCardiac VentriclesHeart VentriclesMuscle TissueBiologyResearch and Analysis MethodsImaging data03 medical and health sciencesImaging Three-DimensionalModel OrganismsHeart Conduction SystemConfocal microscopyAnimalsComplex network analysisMuscle CellsMyocardiumlcsh:ROrganismsBiology and Life SciencesCell BiologyWheat germ agglutininBiological Tissue030104 developmental biologyAmniotesCardiovascular Anatomylcsh:QEndocardiumBiomedical engineeringPLOS ONE
researchProduct

GW-Bodies and P-Bodies Constitute Two Separate Pools of Sequestered Non-Translating RNAs

2015

Non-translating RNAs that have undergone active translational repression are culled from the cytoplasm into P-bodies for decapping-dependent decay or for sequestration. Organisms that use microRNA-mediated RNA silencing have an additional pathway to remove RNAs from active translation. Consequently, proteins that govern microRNA-mediated silencing, such as GW182/Gw and AGO1, are often associated with the P-bodies of higher eukaryotic organisms. Due to the presence of Gw, these structures have been referred to as GW-bodies. However, several reports have indicated that GW-bodies have different dynamics to P-bodies. Here, we use live imaging to examine GW-body and P-body dynamics in the early …

0301 basic medicineCytoplasmEmbryologyTranscription GeneticMolecular biologylcsh:MedicineGene ExpressionRNA-binding proteinsRNA-binding proteinBiochemistryBlastulas0302 clinical medicineRNA interferenceDrosophila ProteinsCell Cycle and Cell DivisionSmall nucleolar RNAlcsh:ScienceRNA structureGeneticsMultidisciplinaryDrosophila MelanogasterAnimal ModelsArgonauteLong non-coding RNACell biologyInsectsNucleic acidsRNA silencingCell ProcessesArgonaute ProteinsRNA InterferenceRNA Long NoncodingDrosophilaCellular Structures and OrganellesResearch ArticleArthropodaBiologyResearch and Analysis Methods03 medical and health sciencesModel OrganismsP-bodiesGeneticsAnimalsBlastodermlcsh:REmbryosOrganismsBiology and Life SciencesProteinsRNACell BiologyInvertebratesMicroRNAsMacromolecular structure analysis030104 developmental biologyProtein BiosynthesisRNAlcsh:QProtein Translation030217 neurology & neurosurgeryDevelopmental BiologyPLOS ONE
researchProduct